A linear input dependence model for interdependent networks

02/10/2021
by   Hemanshu Kaul, et al.
0

We consider a linear relaxation of a generalized minimum-cost network flow problem with binary input dependencies. In this model the flows through certain arcs are bounded by linear (or more generally, piecewise linear concave) functions of the flows through other arcs. This formulation can be used to model interrelated systems in which the components of one system require the delivery of material from another system in order to function (for example, components of a subway system may require delivery of electrical power from a separate system). We propose and study randomized rounding schemes for how this model can be used to approximate solutions to a related mixed integer linear program for modeling binary input dependencies. The introduction of side constraints prevents this problem from being solved using the well-known network simplex algorithm, however by characterizing its basis structure we develop a generalization of network simplex algorithm that can be used for its efficient solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset