A New Coreset Framework for Clustering

04/13/2021
by   Vincent Cohen-Addad, et al.
0

Given a metric space, the (k,z)-clustering problem consists of finding k centers such that the sum of the of distances raised to the power z of every point to its closest center is minimized. This encapsulates the famous k-median (z=1) and k-means (z=2) clustering problems. Designing small-space sketches of the data that approximately preserves the cost of the solutions, also known as coresets, has been an important research direction over the last 15 years. In this paper, we present a new, simple coreset framework that simultaneously improves upon the best known bounds for a large variety of settings, ranging from Euclidean space, doubling metric, minor-free metric, and the general metric cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset