A Nonparametric Maximum Likelihood Approach to Mixture of Regression

08/22/2021
by   Hansheng Jiang, et al.
0

Mixture of regression models are useful for regression analysis in heterogeneous populations where a single regression model may not be appropriate for the entire population. We study the nonparametric maximum likelihood estimator (NPMLE) for fitting these models. The NPMLE is based on convex optimization and does not require prior specification of the number of mixture components. We establish existence of the NPMLE and prove finite-sample parametric (up to logarithmic multiplicative factors) Hellinger error bounds for the predicted density functions. We also provide an effective procedure for computing the NPMLE without ad-hoc discretization and prove a theoretical convergence rate under certain assumptions. Numerical experiments on simulated data for both discrete and non-discrete mixing distributions demonstrate the remarkable performances of our approach. We also illustrate the approach on two real datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset