A novel Lagrange Multiplier approach with relaxation for gradient flows

10/06/2022
by   Zhengguang Liu, et al.
0

In this paper, we propose a novel Lagrange Multiplier approach, named zero-factor (ZF) approach to solve a series of gradient flow problems. The numerical schemes based on the new algorithm are unconditionally energy stable with the original energy and do not require any extra assumption conditions. We also prove that the ZF schemes with specific zero factors lead to the popular SAV-type method. To reduce the computation cost and improve the accuracy and consistency, we propose a zero-factor approach with relaxation, which we named the relaxed zero-factor (RZF) method, to design unconditional energy stable schemes for gradient flows. The RZF schemes can be proved to be unconditionally energy stable with respect to a modified energy that is closer to the original energy, and provide a very simple calculation process. The variation of the introduced zero factor is highly consistent with the nonlinear free energy which implies that the introduced ZF method is a very efficient way to capture the sharp dissipation of nonlinear free energy. Several numerical examples are provided to demonstrate the improved efficiency and accuracy of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset