A Novel Sum-Product Detection Algorithm for Faster-than-Nyquist Signaling: A Deep Learning Approach

12/15/2020
by   Bryan Liu, et al.
0

A deep learning assisted sum-product detection algorithm (DL-SPDA) for faster-than-Nyquist (FTN) signaling is proposed in this paper. The proposed detection algorithm works on a modified factor graph which concatenates a neural network function node to the variable nodes of the conventional FTN factor graph to approach the maximum a posterior probabilities (MAP) error performance. In specific, the neural network performs as a function node in the modified factor graph to deal with the residual intersymbol interference (ISI) that is not considered by the conventional detector with a limited complexity. We modify the updating rule in the conventional sum-product algorithm so that the neural network assisted detector can be complemented to a Turbo equalization receiver. Furthermore, we propose a compatible training technique to improve the detection performance of the proposed DL-SPDA with Turbo equalization. In particular, the neural network is optimized in terms of the mutual information between the transmitted sequence and the extrinsic information. We also investigate the maximum-likelihood bit error rate (BER) performance of a finite length coded FTN system. Simulation results show that the error performance of the proposed algorithm approaches the MAP performance, which is consistent with the analytical BER.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset