A Novel Topology for End-to-end Temporal Classification and Segmentation with Recurrent Neural Network

12/10/2019
by   Taiyang Zhao, et al.
0

Connectionist temporal classification (CTC) has matured as an alignment free to sequence transduction and shows competitive for end-to-end speech recognition. In the CTC topology, the blank symbol occupies more than half of the state trellis, which results the spike phenomenon of the non-blank symbols. For classification task, the spikes work quite well, but as to the segmentation task it does not provide boundaries information. In this paper, a novel topology is introduced to combine the temporal classification and segmentation ability in one framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro