A Parallel PageRank Algorithm For Undirected Graph

12/03/2021
by   Qi Zhang, et al.
0

PageRank is a fundamental property of graph and there have been plenty of PageRank algorithms. Generally, we consider undirected graph as a complicated directed graph. However, some properties of undirected graph, such as symmetry, are ignored when computing PageRank by existing algorithms. In this paper, we propose a parallel PageRank algorithm which is specially for undirected graph. We first demonstrate that the PageRank vector can be viewed as a linear combination of eigenvectors of probability transition matrix and the corresponding coefficients are the functions of eigenvalues. Then we introduce the Chebyshev polynomial approximation by which PageRank vector can be computed iteratively. Finally, we propose the parallel PageRank algorithm as the Chebyshev polynomial approximating algorithm(CPAA). Experimental results show that CPAA only takes 60 least 4 times faster than the power method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset