A partial correlation vine based approach for modeling and forecasting multivariate volatility time-series

02/26/2018
by   Nicole Barthel, et al.
0

A novel approach for dynamic modeling and forecasting of realized covariance matrices is proposed. Realized variances and realized correlation matrices are jointly estimated. The one-to-one relationship between a positive definite correlation matrix and its associated set of partial correlations corresponding to any vine specification is used. A method to select a vine structure, which allows for parsimonious time-series modeling, is introduced. The predicted partial correlations have a clear practical interpretation. Being algebraically independent they do not underlie any algebraic constraint. The forecasting performance is evaluated through investigation of six-dimensional real data and is compared to Cholesky decomposition based benchmark models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro