A particle method for continuous Hegselmann-Krause opinion dynamics
We derive a differential-integral equation akin to the Hegselmann-Krause model of opinion dynamics, and propose a particle method for solving the equation. Numerical experiments demonstrate second-order convergence of the method in a weak sense. We also show that our differential-integral equation can equivalently be stated as a system of differential equations. An integration-by-parts argument that would typically yield an energy dissipation inequality in physical problems then yields a concentration inequality, showing that a natural measure of concentration increases monotonically.
READ FULL TEXT