A priori error analysis for a finite element approximation of dynamic viscoelasticity problems involving a fractional order integro-differential constitutive law

07/01/2020
by   Yongseok Jang, et al.
0

We consider a fractional order viscoelasticity problem modelled by a power-law type stress relaxation function. This viscoelastic problem is a Volterra integral equation of the second kind with a weakly singular kernel where the convolution integral corresponds to fractional order differentiation/integration. We use a spatial finite element method and a finite difference scheme in time. Due to the weak singularity, fractional order integration in time is managed approximately by linear interpolation so that we can formulate a fully discrete problem. In this paper, we present a stability bound as well as a priori error estimates. Furthermore, we carry out numerical experiments with varying regularity of exact solutions at the end.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro