A rational Even-IRA algorithm for the solution of T-even polynomial eigenvalue problems

09/03/2020
by   Peter Benner, et al.
0

In this work we present a rational Krylov subspace method for solving real large-scale polynomial eigenvalue problems with T-even (that is, symmetric/skew-symmetric) structure. Our method is based on the Even-IRA algorithm. To preserve the structure, a sparse T-even linearization from the class of block minimal bases pencils is applied. Due to this linearization, the Krylov basis vectors can be computed in a cheap way. A rational decomposition is derived so that our method explicitly allows for changes of the shift during the iteration. This leads to a method that is able to compute parts of the spectrum of a T-even matrix polynomial in a fast and reliable way.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro