A Second-Order Converse Bound for the Multiple-Access Channel via Wringing Dependence

07/30/2020
by   Oliver Kosut, et al.
0

A new converse bound is presented for the two-user multiple-access channel under the average probability of error constraint. This bound shows that for most channels of interest, the second-order coding rate—that is, the difference between the best achievable rates and the asymptotic capacity region as a function of blocklength n with fixed probability of error—is O(1/√(n)) bits per channel use. The principal tool behind this converse proof is a new measure of dependence between two random variables called wringing dependence, as it is inspired by Ahlswede's wringing technique. The O(1/√(n)) gap is shown to hold for any channel satisfying certain regularity conditions, which includes all discrete-memoryless channels and the Gaussian multiple-access channel. Exact upper bounds as a function of the probability of error are proved for the coefficient in the O(1/√(n)) term, although for most channels they do not match existing achievable bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro