A Simulation Study of the Performance of Statistical Models for Count Outcomes with Excessive Zeros
Background: Outcome measures that are count variables with excessive zeros are common in health behaviors research. There is a lack of empirical data about the relative performance of prevailing statistical models when outcomes are zero-inflated, particularly compared with recently developed approaches. Methods: The current simulation study examined five commonly used analytical approaches for count outcomes, including two linear models (with outcomes on raw and log-transformed scales, respectively) and three count distribution-based models (i.e., Poisson, negative binomial, and zero-inflated Poisson (ZIP) models). We also considered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative that estimates the effects on overall mean while adjusting for zero-inflation. Extensive simulations were conducted to evaluate their the statistical power and Type I error rate across various data conditions. Results: Under zero-inflation, the Poisson model failed to control the Type I error rate, resulting in higher than expected false positive results. When the intervention effects on the zero (vs. non-zero) and count parts were in the same direction, the MZIP model had the highest statistical power, followed by the linear model with outcomes on raw scale, negative binomial model, and ZIP model. The performance of a linear model with a log-transformed outcome variable was unsatisfactory. When only one of the effects on the zero (vs. non-zero) part and the count part existed, the ZIP model had the highest statistical power. Conclusions: The MZIP model demonstrated better statistical properties in detecting true intervention effects and controlling false positive results for zero-inflated count outcomes. This MZIP model may serve as an appealing analytical approach to evaluating overall intervention effects in studies with count outcomes marked by excessive zeros.
READ FULL TEXT