A spectrum of physics-informed Gaussian processes for regression in engineering
Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach. The vast data and resources available to capture human activity are unmatched in our engineered world, and, even in cases where data could be referred to as “big,” they will rarely hold information across operational windows or life spans. This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data. By explicitly linking the physics-based view of stochastic processes with a data-based regression approach, a spectrum of possible Gaussian process models are introduced that enable the incorporation of different levels of expert knowledge of a system. Examples illustrate how these approaches can significantly reduce reliance on data collection whilst also increasing the interpretability of the model, another important consideration in this context.
READ FULL TEXT