A Statistical Inference Framework to Assess Clinical Importance
In clinical research, the effect of a treatment or intervention is widely assessed through clinical importance, instead of statistical significance. In this paper, we propose a principled statistical inference framework to learning the minimal clinically important difference (MCID), a vital concept in assessing clinical importance. We formulate the scientific question into a novel statistical learning problem, develop an efficient algorithm for parameter estimation, and establish the asymptotic theory for the proposed estimator. We conduct comprehensive simulation studies to examine the finite sample performance of the proposed method. We also re-analyze the ChAMP (Chondral Lesions And Meniscus Procedures) trial, where the primary outcome is the patient-reported pain score and the ultimate goal is to determine whether there exists a significant difference in post-operative knee pain between patients undergoing debridement versus observation of chondral lesions during the surgery. Some previous analysis of this trial exhibited that the effect of debriding the chondral lesions does not reach a statistical significance. Our analysis reinforces this conclusion that the effect of debriding the chondral lesions is not only statistically non-significant, but also clinically un-important.
READ FULL TEXT