A Surgery of the Neural Architecture Evaluators
Neural architecture search (NAS) recently received extensive attention due to its effectiveness in automatically designing effective neural architectures. A major challenge in NAS is to conduct a fast and accurate evaluation of neural architectures. Commonly used fast architecture evaluators include one-shot evaluators (including weight sharing and hypernet-based ones) and predictor-based evaluators. Despite their high evaluation efficiency, the evaluation correlation of these evaluators is still questionable. In this paper, we conduct an extensive assessment of both the one-shot and predictor-based evaluator on the NAS-Bench-201 benchmark search space, and break up how and why different factors influence the evaluation correlation and other NAS-oriented criteria. Codes are available at https://github.com/walkerning/aw_nas.
READ FULL TEXT