A Survey on Adversarial Attacks for Malware Analysis

11/16/2021
by   Kshitiz Aryal, et al.
0

Machine learning has witnessed tremendous growth in its adoption and advancement in the last decade. The evolution of machine learning from traditional algorithms to modern deep learning architectures has shaped the way today's technology functions. Its unprecedented ability to discover knowledge/patterns from unstructured data and automate the decision-making process led to its application in wide domains. High flying machine learning arena has been recently pegged back by the introduction of adversarial attacks. Adversaries are able to modify data, maximizing the classification error of the models. The discovery of blind spots in machine learning models has been exploited by adversarial attackers by generating subtle intentional perturbations in test samples. Increasing dependency on data has paved the blueprint for ever-high incentives to camouflage machine learning models. To cope with probable catastrophic consequences in the future, continuous research is required to find vulnerabilities in form of adversarial and design remedies in systems. This survey aims at providing the encyclopedic introduction to adversarial attacks that are carried out against malware detection systems. The paper will introduce various machine learning techniques used to generate adversarial and explain the structure of target files. The survey will also model the threat posed by the adversary and followed by brief descriptions of widely accepted adversarial algorithms. Work will provide a taxonomy of adversarial evasion attacks on the basis of attack domain and adversarial generation techniques. Adversarial evasion attacks carried out against malware detectors will be discussed briefly under each taxonomical headings and compared with concomitant researches. Analyzing the current research challenges in an adversarial generation, the survey will conclude by pinpointing the open future research directions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset