A Systematic Literature Review On Privacy Of Deep Learning Systems

12/07/2022
by   Vishal Jignesh Gandhi, et al.
0

The last decade has seen a rise of Deep Learning with its applications ranging across diverse domains. But usually, the datasets used to drive these systems contain data which is highly confidential and sensitive. Though, Deep Learning models can be stolen, or reverse engineered, confidential training data can be inferred, and other privacy and security concerns have been identified. Therefore, these systems are highly prone to security attacks. This study highlights academic research that highlights the several types of security attacks and provides a comprehensive overview of the most widely used privacy-preserving solutions. This relevant systematic evaluation also illuminates potential future possibilities for study, instruction, and usage in the fields of privacy and deep learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro