A text autoencoder from transformer for fast encoding language representation

11/04/2021
by   Tan Huang, et al.
0

In recent years BERT shows apparent advantages and great potential in natural language processing tasks. However, both training and applying BERT requires intensive time and resources for computing contextual language representations, which hinders its universality and applicability. To overcome this bottleneck, we propose a deep bidirectional language model by using window masking mechanism at attention layer. This work computes contextual language representations without random masking as does in BERT and maintains the deep bidirectional architecture like BERT. To compute the same sentence representation, our method shows O(n) complexity less compared to other transformer-based models with O(n^2). To further demonstrate its superiority, computing context language representations on CPU environments is conducted, by using the embeddings from the proposed method, logistic regression shows much higher accuracy in terms of SMS classification. Moverover, the proposed method also achieves significant higher performance in semantic similarity tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro