A Threshold-based Scheme for Reinforcement Learning in Neural Networks

09/12/2016
by   Thomas H. Ward, et al.
0

A generic and scalable Reinforcement Learning scheme for Artificial Neural Networks is presented, providing a general purpose learning machine. By reference to a node threshold three features are described 1) A mechanism for Primary Reinforcement, capable of solving linearly inseparable problems 2) The learning scheme is extended to include a mechanism for Conditioned Reinforcement, capable of forming long term strategy 3) The learning scheme is modified to use a threshold-based deep learning algorithm, providing a robust and biologically inspired alternative to backpropagation. The model may be used for supervised as well as unsupervised training regimes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro