A Tikhonov Regularization Based Algorithm for Scattered Data with Random Noise

05/03/2021
by   Jiantang Zhang, et al.
0

With the rapid growth of data, how to extract effective information from data is one of the most fundamental problems. In this paper, based on Tikhonov regularization, we propose an effective method for reconstructing the function and its derivative from scattered data with random noise. Since the noise level is not assumed small, we will use the amount of data for reducing the random error, and use a relatively small number of knots for interpolation. An indicator function for our algorithm is constructed. It indicates where the numerical results are good or may not be good. The corresponding error estimates are obtained. We show how to choose the number of interpolation knots in the reconstruction process for balancing the random errors and interpolation errors. Numerical examples show the effectiveness and rapidity of our method. It should be remarked that the algorithm in this paper can be used for on-line data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset