A Time-domain Generalized Wiener Filter for Multi-channel Speech Separation

12/07/2021
by   Yi Luo, et al.
0

Frequency-domain neural beamformers are the mainstream methods for recent multi-channel speech separation models. Despite their well-defined behaviors and the effectiveness, such frequency-domain beamformers still have the limitations of a bounded oracle performance and the difficulties of designing proper networks for the complex-valued operations. In this paper, we propose a time-domain generalized Wiener filter (TD-GWF), an extension to the conventional frequency-domain beamformers that has higher oracle performance and only involves real-valued operations. We also provide discussions on how TD-GWF can be connected to conventional frequency-domain beamformers. Experiment results show that a significant performance improvement can be achieved by replacing frequency-domain beamformers by the TD-GWF in the recently proposed sequential neural beamforming pipelines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset