ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology
We predicted residual fluid intelligence scores from T1-weighted MRI data available as part of the ABCD NP Challenge 2019, using morphological similarity of grey-matter regions across the cortex. Individual structural covariance networks (SCN) were abstracted into graph-theory metrics averaged over nodes across the brain and in data-driven communities/modules. Metrics included degree, path length, clustering coefficient, centrality, rich club coefficient, and small-worldness. These features derived from the training set were used to build various regression models for predicting residual fluid intelligence scores, with performance evaluated both using cross-validation within the training set and using the held-out validation set. Our predictions on the test set were generated with a support vector regression model trained on the training set. We found minimal improvement over predicting a zero residual fluid intelligence score across the sample population, implying that structural covariance networks calculated from T1-weighted MR imaging data provide little information about residual fluid intelligence.
READ FULL TEXT