Abstraction Learning

09/11/2018
by   Fei Deng, et al.
0

There has been a gap between artificial intelligence and human intelligence. In this paper, we identify three key elements forming human intelligence, and suggest that abstraction learning combines these elements and is thus a way to bridge the gap. Prior researches in artificial intelligence either specify abstraction by human experts, or take abstraction as a qualitative explanation for the model. This paper aims to learn abstraction directly. We tackle three main challenges: representation, objective function, and learning algorithm. Specifically, we propose a partition structure that contains pre-allocated abstraction neurons; we formulate abstraction learning as a constrained optimization problem, which integrates abstraction properties; we develop a network evolution algorithm to solve this problem. This complete framework is named ONE (Optimization via Network Evolution). In our experiments on MNIST, ONE shows elementary human-like intelligence, including low energy consumption, knowledge sharing, and lifelong learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro