Active learning with RESSPECT: Resource allocation for extragalactic astronomical transients

by   Noble Kennamer, et al.

The recent increase in volume and complexity of available astronomical data has led to a wide use of supervised machine learning techniques. Active learning strategies have been proposed as an alternative to optimize the distribution of scarce labeling resources. However, due to the specific conditions in which labels can be acquired, fundamental assumptions, such as sample representativeness and labeling cost stability cannot be fulfilled. The Recommendation System for Spectroscopic follow-up (RESSPECT) project aims to enable the construction of optimized training samples for the Rubin Observatory Legacy Survey of Space and Time (LSST), taking into account a realistic description of the astronomical data environment. In this work, we test the robustness of active learning techniques in a realistic simulated astronomical data scenario. Our experiment takes into account the evolution of training and pool samples, different costs per object, and two different sources of budget. Results show that traditional active learning strategies significantly outperform random sampling. Nevertheless, more complex batch strategies are not able to significantly overcome simple uncertainty sampling techniques. Our findings illustrate three important points: 1) active learning strategies are a powerful tool to optimize the label-acquisition task in astronomy, 2) for upcoming large surveys like LSST, such techniques allow us to tailor the construction of the training sample for the first day of the survey, and 3) the peculiar data environment related to the detection of astronomical transients is a fertile ground that calls for the development of tailored machine learning algorithms.


page 1

page 2

page 3

page 4


Large deviations for the perceptron model and consequences for active learning

Active learning is a branch of machine learning that deals with problems...

Finding active galactic nuclei through Fink

We present the Active Galactic Nuclei (AGN) classifier as currently impl...

Adversarial Sampling for Active Learning

This paper describes ASAL a new active learning strategy that uses uncer...

Fink: early supernovae Ia classification using active learning

We describe how the Fink broker early supernova Ia classifier optimizes ...

AL-iGAN: An Active Learning Framework for Tunnel Geological Reconstruction Based on TBM Operational Data

In tunnel boring machine (TBM) underground projects, an accurate descrip...

Active Testing: Sample-Efficient Model Evaluation

We introduce active testing: a new framework for sample-efficient model ...

Active Learning from Crowd in Document Screening

In this paper, we explore how to efficiently combine crowdsourcing and m...

Please sign up or login with your details

Forgot password? Click here to reset