Adaptive pointwise density estimation under local differential privacy

06/15/2022
by   Sandra Schluttenhofer, et al.
0

We consider the estimation of a density at a fixed point under a local differential privacy constraint, where the observations are anonymised before being available for statistical inference. We propose both a privatised version of a projection density estimator as well as a kernel density estimator and derive their minimax rates under a privacy constraint. There is a twofold deterioration of the minimax rates due to the anonymisation, which we show to be unavoidable by providing lower bounds. In both estimation procedures a tuning parameter has to be chosen. We suggest a variant of the classical Goldenshluger-Lepski method for choosing the bandwidth and the cut-off dimension, respectively, and analyse its performance. It provides adaptive minimax-optimal (up to log-factors) estimators. We discuss in detail how the lower and upper bound depend on the privacy constraints, which in turn is reflected by a modification of the adaptive method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro