Adjoint and direct characteristic equations for two-dimensional compressible Euler flows
The method of characteristics is a classical method for gaining understanding in the solution of a partial differential equation. It has recently been applied to the adjoint equations of the 2D Euler equations and the first goal of this paper is to present a linear algebra analysis that greatly simplifies the discussion of the number of independant characteristic equations satisfied along a family of characteristic curves. This method may be applied for both the direct and the adjoint problem and our second goal is to directly derive in conservative variables the characteristic equations of 2D compressible inviscid flows. Finally, the theoretical results are assessed for a nozzle flow with a classical scheme and its dual consistent discrete adjoint.
READ FULL TEXT