Adversarial Augmentation Policy Search for Domain and Cross-Lingual Generalization in Reading Comprehension
Reading comprehension models often overfit to nuances of training datasets and fail at adversarial evaluation. Training with adversarially augmented dataset improves robustness against those adversarial attacks but hurts generalization of the models. In this work, we present several effective adversaries and automated data augmentation policy search methods with the goal of making reading comprehension models more robust to adversarial evaluation, but also improving generalization to the source domain as well as new domains and languages. We first propose three new methods for generating QA adversaries, that introduce multiple points of confusion within the context, show dependence on insertion location of the distractor, and reveal the compounding effect of mixing adversarial strategies with syntactic and semantic paraphrasing methods. Next, we find that augmenting the training datasets with uniformly sampled adversaries improves robustness to the adversarial attacks but leads to decline in performance on the original unaugmented dataset. We address this issue via RL and more efficient Bayesian policy search methods for automatically learning the best augmentation policy combinations of the transformation probability for each adversary in a large search space. Using these learned policies, we show that adversarial training can lead to significant improvements in in-domain, out-of-domain, and cross-lingual generalization without any use of training data from the target domain or language.
READ FULL TEXT