Aerosense: A Self-Sustainable And Long-Range Bluetooth Wireless Sensor Node for Aerodynamic and Aeroacoustic Monitoring on Wind Turbines
This paper presents a low-power, self-sustainable, and modular wireless sensor node for aerodynamic and acoustic measurements on wind turbines and other industrial structures. It includes 40 high-accuracy barometers, 10 microphones, 5 differential pressure sensors, and implements a lossy and a lossless on-board data compression algorithm to decrease the transmission energy cost. The wireless transmitter is based on Bluetooth Low Energy 5.1 tuned for long-range and high throughput while maintaining adequate per-bit energy efficiency (80 nJ). Moreover, we field-assessed the node capability to collect precise and accurate aerodynamic data. Outdoor experimental tests revealed that the system can acquire and sustain a data rate of 850 kbps over 438 m. The power consumption while collecting and streaming all measured data is 120 mW, enabling self-sustainability and long-term in-situ monitoring with a 111 cm^2 photovoltaic panel.
READ FULL TEXT