Ag-dependent (in silico) approach implies a deterministic kinetics for homeostatic memory cell turnover

11/09/2011
by   Alexandre de Castro, et al.
0

Verhulst-like mathematical modeling has been used to investigate several complex biological issues, such as immune memory equilibrium and cell-mediated immunity in mammals. The regulation mechanisms of both these processes are still not sufficiently understood. In a recent paper, Choo et al. [J. Immunol., v. 185, pp. 3436-44, 2010], used an Ag-independent approach to quantitatively analyze memory cell turnover from some empirical data, and concluded that immune homeostasis behaves stochastically, rather than deterministically. In the paper here presented, we use an in silico Ag-dependent approach to simulate the process of antigenic mutation and study its implications for memory dynamics. Our results have suggested a deterministic kinetics for homeostatic equilibrium, what contradicts the Choo et al. findings. Accordingly, our calculations are an indication that a more extensive empirical protocol for studying the homeostatic turnover should be considered.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro