AGNI: In-Situ, Iso-Latency Stochastic-to-Binary Number Conversion for In-DRAM Deep Learning

Recent years have seen a rapid increase in research activity in the field of DRAM-based Processing-In-Memory (PIM) accelerators, where the analog computing capability of DRAM is employed by minimally changing the inherent structure of DRAM peripherals to accelerate various data-centric applications. Several DRAM-based PIM accelerators for Convolutional Neural Networks (CNNs) have also been reported. Among these, the accelerators leveraging in-DRAM stochastic arithmetic have shown manifold improvements in processing latency and throughput, due to the ability of stochastic arithmetic to convert multiplications into simple bit-wise logical AND operations. However,the use of in-DRAM stochastic arithmetic for CNN acceleration requires frequent stochastic to binary number conversions. For that, prior works employ full adder-based or serial counter based in-DRAM circuits. These circuits consume large area and incur long latency. Their in-DRAM implementations also require heavy modifications in DRAM peripherals, which significantly diminishes the benefits of using stochastic arithmetic in these accelerators. To address these shortcomings, this paper presents a new substrate for in-DRAM stochastic-to-binary number conversion called AGNI. AGNI makes minor modifications in DRAM peripherals using pass transistors, capacitors, encoders, and charge pumps, and re-purposes the sense amplifiers as voltage comparators, to enable in-situ binary conversion of input statistic operands of different sizes with iso latency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro