An Adaptive Time Stepping Scheme for Rate-Independent Systems with Non-Convex Energy

04/12/2022
by   Merlin Andreia, et al.
0

We investigate a local incremental stationary scheme for the numerical solution of rate-independent systems. Such systems are characterized by a (possibly) non-convex energy and a dissipation potential, which is positively homogeneous of degree one. Due to the non-convexity of the energy, the system does in general not admit a time-continuous solution. In order to resolve these potential discontinuities, the algorithm produces a sequence of state variables and physical time points as functions of a curve parameter. The main novelty of our approach in comparison to existing methods is an adaptive choice of the step size for the update of the curve parameter depending on a prescribed tolerance for the residua in the energy-dissipation balance and in a complementarity relation concerning the so-called local stability condition. It is proven that, for tolerance tending to zero, the piecewise affine approximations generated by the algorithm converge (weakly) to a so-called 𝕍-parametrized balanced viscosity solution. Numerical experiments illustrate the theoretical findings and show that an adaptive choice of the step size indeed pays off as they lead to a significant increase of the step size during sticking and in viscous jumps.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro