An Approximation Algorithm for Ancestral Maximum-Likelihood and Phylogeography Inference Problems under Time Reversible Markov Evolutionary Models

The ancestral maximum-likelihood and phylogeography problems are two fundamental problems involving evolutionary studies. The ancestral maximum-likelihood problem involves identifying a rooted tree alongside internal node sequences that maximizes the probability of observing a given set of sequences as leaves. The phylogeography problem extends the ancestral maximum-likelihood problem to incorporate geolocation of leaf and internal nodes. While a constant factor approximation algorithm has been established for the ancestral maximum-likelihood problem concerning two-state sequences, no such algorithm has been devised for any generalized instances of the problem. In this paper, we focus on a generalization of the two-state model, the time reversible Markov evolutionary models for sequences and geolocations. Under this evolutionary model, we present a 2log_2 k-approximation algorithm, where k is the number of input samples, addressing both the ancestral maximum-likelihood and phylogeography problems. This is the first approximation algorithm for the phylogeography problem. Furthermore, we show how to apply the algorithm on popular evolutionary models like generalized time-reversible (GTR) model and its specialization Jukes and Cantor 69 (JC69).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro