An Efficient Hardware-Oriented Dropout Algorithm

11/14/2019
by   Yoeng Jye Yeoh, et al.
0

This paper proposes a hardware-oriented dropout algorithm, which is efficient for field programmable gate array (FPGA) implementation. In deep neural networks (DNNs), overfitting occurs when networks are overtrained and adapt too well to training data. Consequently, they fail in predicting unseen data used as test data. Dropout is a common technique that is often applied in DNNs to overcome this problem. In general, implementing such training algorithms of DNNs in embedded systems is difficult due to power and memory constraints. Training DNNs is power-, time-, and memory- intensive; however, embedded systems require low power consumption and real-time processing. An FPGA is suitable for embedded systems for its parallel processing characteristic and low operating power; however, due to its limited memory and different architecture, it is difficult to apply general neural network algorithms. Therefore, we propose a hardware-oriented dropout algorithm that can effectively utilize the characteristics of an FPGA with less memory required. Software program verification demonstrates that the performance of the proposed method is identical to that of conventional dropout, and hardware synthesis demonstrates that it results in significant resource reduction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset