An explicit and practically invariants-preserving method for conservative systems
An explicit numerical strategy that practically preserves invariants is derived for conservative systems by combining an explicit high-order Runge-Kutta (RK) scheme with a simple modification of the standard projection approach, which is named the explicit invariants-preserving (EIP) method. The proposed approach is shown to have the same order as the underlying RK method, while the error of invariants is analyzed in the order of 𝒪(h^2(p+1)), where h is the time step and p represents the order of the method. When p is appropriately large, the EIP method is practically invariants-conserving because the error of invariants can reach the machine accuracy. The method is illustrated for the cases of single and multiple invariants, with regard to both ODEs and high-dimensional PDEs. Extensive numerical experiments are presented to verify our theoretical results and demonstrate the superior behaviors of the proposed method in a long time numerical simulation. Numerical results suggest that the fourth-order EIP method preserves much better the qualitative properties of the flow than the standard fourth-order RK method and it is more efficient in practice than the fully implicit integrators.
READ FULL TEXT