An Improved Analysis of Least Squares Superposition Codes with Bernoulli Dictionary
For the additive white Gaussian noise channel with average power constraint, sparse superposition codes, proposed by Barron and Joseph in 2010, achieve the capacity. While the codewords of the original sparse superposition codes are made with a dictionary matrix drawn from a Gaussian distribution, we consider the case that it is drawn from a Bernoulli distribution. We show an improved upper bound on its block error probability with least squares decoding, which is fairly simplified and tighter bound than our previous result in 2014.
READ FULL TEXT