An Improved Unbiased Particle Filter

02/20/2023
by   Ajay Jasra, et al.
0

In this paper we consider the filtering of partially observed multi-dimensional diffusion processes that are observed regularly at discrete times. We assume that, for numerical reasons, one has to time-discretize the diffusion process which typically leads to filtering that is subject to discretization bias. The approach in [16] establishes that when only having access to the time-discretized diffusion it is possible to remove the discretization bias with an estimator of finite variance. We improve on the method in [16] by introducing a modified estimator based on the recent work of [17]. We show that this new estimator is unbiased and has finite variance. Moreover, we conjecture and verify in numerical simulations that substantial gains are obtained. That is, for a given mean square error (MSE) and a particular class of multi-dimensional diffusion, the cost to achieve the said MSE falls.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro