An iterated block particle filter for inference on coupled dynamic systems with shared and unit-specific parameters

06/08/2022
by   Edward L. Ionides, et al.
0

We consider inference for a collection of partially observed, stochastic, interacting, nonlinear dynamic processes. Each process is identified with a label called its unit, and our primary motivation arises in biological metapopulation systems where a unit corresponds to a spatially distinct sub-population. Metapopulation systems are characterized by strong dependence through time within a single unit and relatively weak interactions between units, and these properties make block particle filters an effective tool for simulation-based likelihood evaluation. Iterated filtering algorithms can facilitate likelihood maximization for simulation-based filters. We introduce a new iterated block particle filter algorithm applicable when parameters are unit-specific or shared between units. We demonstrate this algorithm by performing inference on a coupled epidemiological model describing spatiotemporal measles case report data for twenty towns.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro