Analysis of memory consumption by neural networks based on hyperparameters

10/21/2021
by   Mahendran N, et al.
0

Deep learning models are trained and deployed in multiple domains. Increasing usage of deep learning models alarms the usage of memory consumed while computation by deep learning models. Existing approaches for reducing memory consumption like model compression, hardware changes are specific. We propose a generic analysis of memory consumption while training deep learning models in comparison with hyperparameters used for training. Hyperparameters which includes the learning rate, batchsize, number of hidden layers and depth of layers decide the model performance, accuracy of the model. We assume the optimizers and type of hidden layers as a known values. The change in hyperparamaters and the number of hidden layers are the variables considered in this proposed approach. For better understanding of the computation cost, this proposed analysis studies the change in memory consumption with respect to hyperparameters as main focus. This results in general analysis of memory consumption changes during training when set of hyperparameters are altered.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro