Approximate Message Passing with Spectral Initialization for Generalized Linear Models

10/07/2020
by   Marco Mondelli, et al.
0

We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main technical contribution is the construction and analysis of a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. Our analysis yields a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. We also provide numerical results that demonstrate the validity of the proposed approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset