Approximations for Decision Making in the Dempster-Shafer Theory of Evidence

02/13/2013
by   Mathias Bauer, et al.
0

The computational complexity of reasoning within the Dempster-Shafer theory of evidence is one of the main points of criticism this formalism has to face. To overcome this difficulty various approximation algorithms have been suggested that aim at reducing the number of focal elements in the belief functions involved. Besides introducing a new algorithm using this method, this paper describes an empirical study that examines the appropriateness of these approximation procedures in decision making situations. It presents the empirical findings and discusses the various tradeoffs that have to be taken into account when actually applying one of these methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro