Arbitrary Bit-width Network: A Joint Layer-Wise Quantization and Adaptive Inference Approach

04/21/2022
by   Chen Tang, et al.
0

Conventional model quantization methods use a fixed quantization scheme to different data samples, which ignores the inherent "recognition difficulty" differences between various samples. We propose to feed different data samples with varying quantization schemes to achieve a data-dependent dynamic inference, at a fine-grained layer level. However, enabling this adaptive inference with changeable layer-wise quantization schemes is challenging because the combination of bit-widths and layers is growing exponentially, making it extremely difficult to train a single model in such a vast searching space and use it in practice. To solve this problem, we present the Arbitrary Bit-width Network (ABN), where the bit-widths of a single deep network can change at runtime for different data samples, with a layer-wise granularity. Specifically, first we build a weight-shared layer-wise quantizable "super-network" in which each layer can be allocated with multiple bit-widths and thus quantized differently on demand. The super-network provides a considerably large number of combinations of bit-widths and layers, each of which can be used during inference without retraining or storing myriad models. Second, based on the well-trained super-network, each layer's runtime bit-width selection decision is modeled as a Markov Decision Process (MDP) and solved by an adaptive inference strategy accordingly. Experiments show that the super-network can be built without accuracy degradation, and the bit-widths allocation of each layer can be adjusted to deal with various inputs on the fly. On ImageNet classification, we achieve 1.1 while saving 36.2

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset