Architecting Dependable Learning-enabled Autonomous Systems: A Survey

02/27/2019
by   Chih-Hong Cheng, et al.
0

We provide a summary over architectural approaches that can be used to construct dependable learning-enabled autonomous systems, with a focus on automated driving. We consider three technology pillars for architecting dependable autonomy, namely diverse redundancy, information fusion, and runtime monitoring. For learning-enabled components, we additionally summarize recent architectural approaches to increase the dependability beyond standard convolutional neural networks. We conclude the study with a list of promising research directions addressing the challenges of existing approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro