ArchNet: Data Hiding Model in Distributed Machine Learning System
Cloud computing services has become the de facto standard technique for training neural network. However, the computing resources of the cloud servers are limited by hardware and the fixed algorithms of service provider. We observe that this problem can be addressed by a distributed machine learning system, which can utilize the idle devices on the Internet. We further demonstrate that such system can improve the computing flexibility by providing diverse algorithm. For the purpose of the data encryption in the distributed system, we propose Tripartite Asymmetric Encryption theorem and give a mathematical proof. Based on the theorem, we design a universal image encryption model ArchNet. The model has been implemented on MNIST, Fashion-MNIST and Cifar-10 datasets. We use different base models on the encrypted datasets and contrast the results with RC4 algorithm and Difference Privacy policy. The accuracies on the datasets encrypted by ArchNet are 97.26%, 84.15% and 79.80%, and they are 97.31%, 82.31% and 80.22% on the original datasets. Our evaluations show that ArchNet significantly outperforms RC4 on 3 classic image classification datasets at the recognition accuracy and our encrypted dataset sometimes outperforms than the original dataset and the difference privacy policy.
READ FULL TEXT