Area, Delay, and Energy-Efficient Full Dadda Multiplier

07/11/2023
by   Muteen Munawar, et al.
0

The Dadda algorithm is a parallel structured multiplier, which is quite faster as compared to array multipliers, i.e., Booth, Braun, Baugh-Wooley, etc. However, it consumes more power and needs a larger number of gates for hardware implementation. In this paper, a modified-Dadda algorithm-based multiplier is designed using a proposed half-adder-based carry-select adder with a binary to excess-1 converter and an improved ripple-carry adder (RCA). The proposed design is simulated in different technologies, i.e., Taiwan Semiconductor Manufacturing Company (TSMC) 50nm, 90nm, and 120nm, and on different GHz frequencies, i.e., 0.5, 1, 2, and 3.33GHz. Specifically, the 4-bit circuit of the proposed design in TSMCs 50nm technology consumes 25uW of power at 3.33GHz with 76ps of delay. The simulation results reveal that the design is faster, more power-energy-efficient, and requires a smaller number of transistors for implementation as compared to some closely related works. The proposed design can be a promising candidate for low-power and low-cost digital controllers. In the end, the design has been compared with recent relevant works in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset