ARTS: Eliminating Inconsistency between Text Detection and Recognition with Auto-Rectification Text Spotter

10/20/2021
by   Humen Zhong, et al.
0

Recent approaches for end-to-end text spotting have achieved promising results. However, most of the current spotters were plagued by the inconsistency problem between text detection and recognition. In this work, we introduce and prove the existence of the inconsistency problem and analyze it from two aspects: (1) inconsistency of text recognition features between training and testing, and (2) inconsistency of optimization targets between text detection and recognition. To solve the aforementioned issues, we propose a differentiable Auto-Rectification Module (ARM) together with a new training strategy to enable propagating recognition loss back into detection branch, so that our detection branch can be jointly optimized by detection and recognition targets, which largely alleviates the inconsistency problem between text detection and recognition. Based on these designs, we present a simple yet robust end-to-end text spotting framework, termed Auto-Rectification Text Spotter (ARTS), to detect and recognize arbitrarily-shaped text in natural scenes. Extensive experiments demonstrate the superiority of our method. In particular, our ARTS-S achieves 77.1 Total-Text at a competitive speed of 10.5 FPS, which significantly outperforms previous methods in both accuracy and inference speed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset