Assessing Phrase Break of ESL speech with Pre-trained Language Models

10/28/2022
by   Zhiyi Wang, et al.
0

This work introduces an approach to assessing phrase break in ESL learners' speech with pre-trained language models (PLMs). Different with traditional methods, this proposal converts speech to token sequences, and then leverages the power of PLMs. There are two sub-tasks: overall assessment of phrase break for a speech clip; fine-grained assessment of every possible phrase break position. Speech input is first force-aligned with texts, then pre-processed to a token sequence, including words and associated phrase break information. The token sequence is then fed into the pre-training and fine-tuning pipeline. In pre-training, a replaced break token detection module is trained with token data where each token has a certain percentage chance to be randomly replaced. In fine-tuning, overall and fine-grained scoring are optimized with text classification and sequence labeling pipeline, respectively. With the introduction of PLMs, the dependence on labeled training data has been greatly reduced, and performance has improved.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset