Assessing the performance of smart grid communication networks under both time and budget constraints
The smart grid concept has emerged to address the existing problems in the traditional electric grid, which has been functioning for more than a hundred years. The most crucial difference between traditional grids and smart grids is the communication infrastructure applied to the latter. However, coupling between these networks can increase the risk of significant failures. Hence, assessing the performance of the smart grid communication networks is of great importance and thus is considered here. As transmission time and cost play essential roles in many real-world communication networks, both time and budget constraints are considered in this work. To evaluate the performance of communication networks, we assume that the data is transmitted from a source to a destination through a single path. We propose an algorithm that computes the exact probability of transmitting d units of data from the source to the destination within T units of time and the budget of b. The algorithm is illustrated through a benchmark network example. The complexity results are also provided. A rather large-size benchmark, that is, Pan European topology, along with one thousand randomly generated test problems are used to generate the experimental results which show clearly the superiority of our proposed algorithms to some existing algorithm in the literature.
READ FULL TEXT