Asymptotic properties of the normalized discrete associated-kernel estimator for probability mass function

02/21/2022
by   Youssef Esstafa, et al.
0

Discrete kernel smoothing is now gaining importance in nonparametric statistics. In this paper, we investigate some asymptotic properties of the normalized discrete associated-kernel estimator of a probability mass function. We show, under some regularity and non-restrictive assumptions on the associated-kernel, that the normalizing random variable converges in mean square to 1. We then derive the consistency and the asymptotic normality of the proposed estimator. Various families of discrete kernels already exhibited satisfy the conditions, including the refined CoM-Poisson which is underdispersed and of second-order. Finally, the first-order binomial kernel is discussed and, surprisingly, its normalized estimator has a suitable asymptotic behaviour through simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset