Audio-visual scene classification via contrastive event-object alignment and semantic-based fusion
Previous works on scene classification are mainly based on audio or visual signals, while humans perceive the environmental scenes through multiple senses. Recent studies on audio-visual scene classification separately fine-tune the largescale audio and image pre-trained models on the target dataset, then either fuse the intermediate representations of the audio model and the visual model, or fuse the coarse-grained decision of both models at the clip level. Such methods ignore the detailed audio events and visual objects in audio-visual scenes (AVS), while humans often identify different scenes through audio events and visual objects within and the congruence between them. To exploit the fine-grained information of audio events and visual objects in AVS, and coordinate the implicit relationship between audio events and visual objects, this paper proposes a multibranch model equipped with contrastive event-object alignment (CEOA) and semantic-based fusion (SF) for AVSC. CEOA aims to align the learned embeddings of audio events and visual objects by comparing the difference between audio-visual event-object pairs. Then, visual objects associated with certain audio events and vice versa are accentuated by cross-attention and undergo SF for semantic-level fusion. Experiments show that: 1) the proposed AVSC model equipped with CEOA and SF outperforms the results of audio-only and visual-only models, i.e., the audio-visual results are better than the results from a single modality. 2) CEOA aligns the embeddings of audio events and related visual objects on a fine-grained level, and the SF effectively integrates both; 3) Compared with other large-scale integrated systems, the proposed model shows competitive performance, even without using additional datasets and data augmentation tricks.
READ FULL TEXT